

Isolation of a Terminal Organocerium Acetylide Complex and its Reactivity with Enolizable Ketones

Jee Eon Kim Advisor: Prof. Eric J. Schelter University of Pennsylvania ACS Spring 2015 Denver 03/22/2015

'Milder' nucleophilic alkyl group

Imamoto, T.; Kusumoto, T.; Yokoyama, M., *J. Chem. Soc., Chem. Commun.,* **1982**, 1042-1044 Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y., *J. Am. Chem. Soc.,* **1989**, 111, 4392-4398

Imamoto, T.; Kusumoto, T.; Yokoyama, M., *J. Chem. Soc., Chem. Commun.,* **1982**, 1042-1044 Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y., *J. Am. Chem. Soc.,* **1989**, 111, 4392-4398 Sadler, S.; Persons, K. S.; Jones, G. B.; Rahul R., *Bioorg. Med. Chem. Lett.*, **2011**, 21, 4638-4641

Dr. Gary Molander

Dr. Giuseppe Bartoli

Molander, G. A.: *Chem. Rev.* **1992**, *92*, 29-68. Bartoli, G.; Marcantoni, E.; Marcolini, M.; Sambri, L.: *Chem. Rev.* **2010**, *110*, 6104-6143.

"Little is known of the structure of these organoceriums, or the exact nature of the reactive species."

"It must be noted that, despite extensive efforts, the solution structure of the reagent formed from $CeCl_3$ and Grignard reagents is still obscure."

Can we make a cerium hydrocarbyl complex that shows carbonyl addition reactions?

Ln & An Hydrocarbyl Complexes with Ketones

Matson, E. M.; Fanwick, P. E.; Bart, S. C.: *Organometallics* **2011**, *30*, 5753-5762. Kraft, S. J. F., P. E.; Bart, S. C.: *Organometallics* **2013**, *32*, 3279-3285.

Brycki, B. M., H.; Brzezinski, B. J. Mol. Struct. 1991, 246, 61-71

Hogerheide, M. P.; Jastrzebski, J. T. B. H.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. Inorg. Chem. 1994, 33, 4431-4432.

Hogerheide, M. P.; Ringelberg, S. N.; Grove, D. M.; Jastrzebski, J. T. B. H.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. Inorg. Chem. 1996, 35, 1185-1194.

Synthesis of Na[Ce(OTf)(bdmmp)₃]

Kim, J. E.; Weinberger, D. S.; Carroll, P. J; Schelter, E. J., Organometallics, 2014, 33, 5948–5951

Kim, J. E.; Weinberger, D. S.; Carroll, P. J; Schelter, E. J., Organometallics, 2014, 33, 5948–5951

¹H NMR of Na[Ce(C=CPh)(bdmmp)₃] in benzene- d_6

Kim, J. E.; Weinberger, D. S.; Carroll, P. J; Schelter, E. J., Organometallics, 2014, 33, 5948–5951

Evans, W. J.; Keyer, R. A.; Ziller, J. W. Organometallics, 1993, 12, 2618

Heeres, H. J.; Nijhoff, J.; Teuben, J. H. Organometallics, 1993, 12, 2609

$Na[Ce(C \equiv CPh)(bdmmp)_3]$ in benzene-d₆, 130 °C in J. Young tube

Reactions to Coordinate Other Hydrocarbyl Groups

Chemical Principles 7th edition, Zumdahl & Decoste, 2013, Brooks/Cole Cengage learning

Reactivity of Ce–C_{acetylide} Bond on Enolizable Ketones

Crystal Structures

http://www.chem.wisc.edu/areas/reich/pkatable/

Kim, J. E.; Weinberger, D. S.; Carroll, P. J; Schelter, E. J., Organometallics, 2014, 33, 5948-5951

Carbonyl Addition Reaction with 1,1-diphenylacetone

C -2.83 H +0.13 N +0.73

1,2-addition of Benzylidene acetone into Ce-C_{acetylide} Bond

Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y.: *J. Am. Chem. Soc.* **1989**, *111*, 4392-4398. Chemical Principles 7th edition, Zumdahl & Decoste, 2013, Brooks/Cole Cengage learning

With Highly Enolizable Ketone, *β*-tetralone

- 1. The structure of the first terminal trivalent cerium acetylide complex was determined.
- 2. Utilization of high Lewis acidity of the cerium metal ion;
 a) Even though deprotonation of α-proton was thermodynamically favorable, insertion into Ce–C bond occurred.
 b) Successfully proved 1,2-adduct from benzylidene acetone
- Lability of pendant amine groups on bdmmp⁻ afford the ketone substrates accessible to the cerium metal center, making carbonyl group more vulnerable to nucleophilic attack by the acetylide.

Acknowledgements

The Schelter group

Advisor: Dr. Eric J. Schelter X-ray crystallography : Dr. Patrick J. Carroll Dr. Christopher R. Graves (Albright college) Dr. Nick Piro Dr. Andrew J. Lewis

CHE-1362854 CHE-0840438 (X-ray)